2011
Type of resources
Topics
Contact
Provided by
Years
Formats
Representation type
Update frequencies
status
-
This photography was captured to assess flood damage along rivers in selected towns in WCMA & GHCMA: Great Western, Navarre, Beufort, Skipton, and Glenorchy. The Georeferenced (reduced accuracy) image includes 4 bands and tiled into 1km tiles. It is available in both TIFF and ECW compress format.
-
The imagery contains two products. The fully orthorectified 35cm true colour visible (RGB) imagery was captured over the Surf Coast Shire. The Georeferenced (reduced accuracy) image includes 3 visible bands (RGB) and one separate IR band and covers the Surf Coast Shire/ Otways area. Both products are tiled into 5 km tiles and available in both TIFF and ECW compress format.
-
The Wombat State Forest represents a gap in MWs recent elevation data coverage (both LiDAR and Photogrammetric). In addition, DSE sees an opportunity to expand MW AOI to complete the entire western side of the Port Phillip and Western Port CMA with high accuracy LiDAR coverage. This would encompass the Wombat State Park area and supersede pre-existing, lower accuracy elevation data sets. This coverage would adjoin the western edge of the Melbourne LiDAR project and leave only the extreme South Eastern section of the PPWP CMA not covered by high accuracy LiDAR data. AAM was commissioned by the Department of Sustainability and Environment to conduct a LiDAR survey over the North West Melbourne Area. The project area, comprising a total area of approximatley 2600 square kilometres, has been divided into 3 sub areas.
-
Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median or 50th percentile - of the model results, while the uncertainty range is based on two extreme values the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)
-
15cm digital photography over selected towns captured as part of the 2010-11 CIP for the Shire of Central Goldfields. The imagery consists of 3 visible bands and is orthorectified, therefore having an inherent high accuracy and edgematching specification and is useful for a variety of purposes
-
Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median or 50th percentile - of the model results, while the uncertainty range is based on two extreme values the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)
-
Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median or 50th percentile - of the model results, while the uncertainty range is based on two extreme values the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)
-
The DOT Multi-Temporal Asset Monitoring project was commissioned to supply imagery over approximately a 3800 square kilometre project area to assist the Department of Transport with its rail asset monitoring program. There will be four seasonal captures (summer, autumn, winter, spring) over the rail asset monitoring project area. The capture area has been divided into 11 delivery areas and mosaics for ease of supply. The 11 delivery areas are: 01-sunbury, 02-cragieburn, 03-melton, 04-essendon, 05-heidelberg, 06-lilydale, 07-werribee, 08-oakleigh, 09-belgrave, 10-cranbourne, 11-pakenham and the mosaics for each of these will be date stamped with the earliest date of photography which makes up that seasonal capture.
-
Digital version of topographic maps. The data is in individual mapsheet times in jpg format, or a mosaic ecw.
-
Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median or 50th percentile - of the model results, while the uncertainty range is based on two extreme values the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)