From 1 - 10 / 115
  • This product is a fully orthorectified true colour visible imagery, tiled into 1km tiles and captured during summer. The imagery is available in both TIFF and ECW compress format.

  • Collected as part of the 2010-11 CIP, this 12cm orthorectified visible band photography covers selected localities within Surfcoast Shire

  • The DOT Multi-Temporal Asset Monitoring project was commissioned to supply imagery over approximately a 3800 square kilometre project area to assist the Department of Transport with its rail asset monitoring program. There will be four seasonal captures (summer, autumn, winter, spring) over the rail asset monitoring project area. The capture area has been divided into 11 delivery areas and mosaics for ease of supply. The 11 delivery areas are: 01-sunbury, 02-cragieburn, 03-melton, 04-essendon, 05-heidelberg, 06-lilydale, 07-werribee, 08-oakleigh, 09-belgrave, 10-cranbourne, 11-pakenham and the mosaics for each of these will be date stamped with the earliest date of photography which makes up that seasonal capture.

  • Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median – or 50th percentile - of the model results, while the uncertainty range is based on two extreme values – the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)

  • Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median – or 50th percentile - of the model results, while the uncertainty range is based on two extreme values – the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)

  • Captured between 23 Dec 2010 - 23 Jan 2011 (Ultracam D) and 30 Jan 2011 - 18 April 2011 (Ultracam X), this 35cm fastlook product covers the 2010-11 Port Phillip UDP project area which as been expanded to include Western Water management area and Drouin. Capture for this project was hampered by the unseasonal wet weather conditions over Melbourne throughout December 2010 - April 2011.

  • Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median – or 50th percentile - of the model results, while the uncertainty range is based on two extreme values – the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)

  • 10cm Orthorectified photography captured as part of the 2010-11 CIP for Frankston City Council

  • The purpose of collecting historic air photos is to detect and measure any changes (long term progressive or cyclic) in shorelines over the last 60 years. The sorts of shorelines that may have shown significant change over that sort of time frame include sandy beach-dune shores, scarped 'soft-rock' shores, muddy mangrove shores, and others. The photography will be used to identify an erosion scarp or a seawards vegetation limit (which may move seawards or landwards as a shore erodes or accretes).

  • Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median – or 50th percentile - of the model results, while the uncertainty range is based on two extreme values – the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)